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The topology of the universe: the biggest manifold of them all
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Clues as to the geometry of the universe are encoded in the cosmic background radiation. Hot and cold spots in the primordial
radiation may be randomly distributed in an infinite universe while in a universe with compact topology distinctive patterns
can be generated. With improved vision, we could actually see if the universe is wrapped into a hexagonal prism or a hyperbolic
horn. We discuss the search for such geometric patterns in predictive maps of the microwave sky.
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The world abounds with objects that have multicon-
nected topology. The coffee cup comes to mind as the
overused but adored example of a compact surface with
genus 1. There is also the coffee cup’s topological equiv-
alent, the donut. People, buildings, the Earth, are all
topologically connected. As you begin to scan the ex-
amples you realize that every thing is at least finite if
not actually multiply connected. By contrast, no thing
is infinite. Yet cosmology has persisted in the assump-
tion that the universe is infinite. Try explaining that to
your friends and neighbors.

Ignoring the global topology of the universe is partic-
ularly neglectful in a theory that purports to be a theory
of geometry. Einstein’s revolution pivots on discarding
the notion of a gravitational force in favor of a theory of
geometry. Yet his theory is incomplete. While general
relativity determines the local curvature of spacetime, it
falls short of specifying the global topology. A complete
theory of gravity should be able to predict topology [1].
In the absence of a theory of global geometry, we can
still wonder how natural it would be to live in a given
cosmos. In all, there are an infinite number of multicon-
nected topologies but only three simply connected ones.
Consistent with the belief that we are not in a privileged
place in the universe, we should not live in a geometrically
special space. The proliferation of compact spaces, par-
ticularly hyperbolic, compact spaces [2], indicates that
a compact universe may be more probable [3]. A quan-
tum cosmological treatment is needed to make this notion
more precise [4,5]. While it is difficult to define a measure
on the set of compact spaces, it is at least clear that the
assumption of an infinite universe has no basis on which
to claim naturalness.

We can observe topology despite our inability to pre-
dict it. Granted, an era of inflation would likely push the
size of the fundamental domain beyond the observable
universe. However, inflation also predicts that the curva-
ture radius is huge relative to the size of the observable
universe. Since observational evidence is favoring a neg-
atively curved space, theoretical prejudices are consider-
ably weakened. If curvature is observable, then perhaps
so too is topology.

Limits on a universal topology scale are often set by
searching for periodicity in observations of large struc-
tures [6,7]. Ghost images of any source appear as light
wraps around the universe along different paths and repli-
cates its image for any observer. This leads to an extreme
version of Obler’s paradox whereby a single bright source
could light up the sky if left shining for long enough [8].
On an astronomical scale, there would be ghosts of galax-
ies and quasars. Since the ghosts are not identical clones,
but are rather images of the source at different ages, a
search for ghosts is impeded by evolutionary effects and
in the end may be a difficult way to identify the connect-
edness of space.

A far more sensitive probe is offered by the the cos-
mic background radiation (CBR). This one relatively un-
marred fossil record from the early universe can reveal the

large-scale landscape of the universe. Tiny fluctuations
in the spacetime geometry appear as hot and cold spots
in the otherwise smooth primordial radiation. The geo-
metric fluctuations at the time light last scatters can be
reconstructed from these hot and cold spots and offers a
critical test of small topologies. Only perturbations that
fit inside the compact manifold are allowed. The result is
a pattern of fluctuations on the microwave sky reflecting
the full structure of spacetime, local and global.

The challenge is to predict the spatial pattern given
the geometry. We discuss the reflection of geometry in
the CBR sky in flat topologies (§I) and in the one mul-
ticonnected (but not fully compact) hyperbolic space for
which CBR maps have been constructed (§II). None of
the fully compact hyperbolic geometries have been con-
strained and have in fact become the topic of much re-
cent interest [1,3,9,10]. We are learning from the simpler
spaces how to predict the features in the microwave sky
for the resistant compact hyperbolic cosmos (§III).

I. COMPACT, FLAT COSMOLOGIES

We want to predict a map of the temperature fluctua-
tions. In a homogeneous and isotropic space, an angular
average over the fluctuations contains all of the essential
information. Of the six compact, orientable flat spaces,
all destroy global isotropy and all except for the hyper-
torus destroy global homogeneity. As a result, there is
more information in a map of temperature fluctuations
than just the angular power spectrum. Although we ar-
gue that the angular average overlooks conspicuous fea-
tures in general, for the equal sided flat cases angular
spectra do provide a reasonable bound.

Four of the six orientable, compact topologies of E3 are
constructed from a parallelepiped as the fundamental do-
main. The other two are built from a hexagonal prism.
The hypertorus is the simplest and has been studied by
many authors [6,11–13]. Stevens, Scott, and Silk [12]
pointed out that in a flat 3-torus, the spectrum of tem-
perature fluctuations was truncated at long wavelengths
in order to fit within the finite box. Contrary to stan-
dard lore, we find all of the equal sided compact flat
manifolds show a truncation in the power of fluctuations
on wavelengths comparable to the size of the fundamen-
tal domain [14,15]. The longest wavelength fluctuation
observed, namely the quadrupole, is in fact low. Some
might even take this as evidence for topology [16]. Cos-
mic variance is also large on large scales. Consequently,
a fundamental domain the size of the observable universe
is actually consistent with the COBE data [14].

A very small universe however is incompatible with the
data. The cutoff in long wavelength perturbations is ac-
companied by gaps in power at wavelengths that do not
correspond to integer windings through the fundamental
domain. All compact spaces show discrete harmonics and
as such the sharp harmonics may be a more generic sign
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FIG. 1. A hexagonal prism with a 2π/3 twist. The observer
is at the center of the universe in the map of δT (n̂)/T . The
fundamental domain is half the diameter of the observable
universe in two directions and one-tenth that in the twisted
direction.

of compact topology. The jaggy spectra of such small
compact flat spaces are tens of times less likely than the
smooth spectrum of infinite E

3. We conclude, quite con-
servatively, that the universe, if finite and flat and equal-
sided, must be at least 80% the radius of the surface of
last scatter and so 40% of the diameter of the observable
universe. There could still be as many as eight copies of
our universe within the observable horizon.

If instead of an equal-sided space we consider a funda-
mental domain with disparate length scales, the angular
power spectrum is in general a poor discriminant. The
averaging over the sky fails to recognize the strong fea-
tures in the cosmos. Fig. 1 shows a predictive map of
the hot and cold fluctuations in a 2π/3-twisted hexago-
nal prism. We have set the length of the fundamental do-
main to be ten times smaller in the twisted direction than
along the face of the hexagon. The average large angle
power in fluctuations is actually consistent with the data,
although clearly this anisotropic space does not look like
the sky we observe. A better statistic to discern patterns
and correlations is badly needed [14,17]. The promising
suggestions of [9,3,17] may be the key and are discussed
more in §III.

We could have predicted certain features of the map
of Fig. 1, even if we had not known the eigenmodes ex-
plicitly. A 2D slice through the 3D tiling of space is
represented in Fig. 2. If we draw bands connecting op-
posite sides of the hexagons and highlight any overlaps,
we can predict the imprint of one mode as shown on the
top of Fig. 2. Given that we do know the eigenmodes,
we can show the actual contour plot of the hot and cold
fluctuations for a similar mode on the bottom of Fig. 2.
Comparing the guess with the actual contours shows our

FIG. 2. Top: A guess at one mode. Bottom: A contour
plot of the temperature fluctuation for a similar mode.

FIG. 3. A contour plot of the temperature fluctuation for
a mode that winds through the twisted prism.

guess did quite well. The hexagonal shape of the uni-
verse is clearly seen. In actuality, there are many modes
competing to imprint a pattern on the sky which blurs
the signature hexagons. In Fig. 3, is another contour plot
of hot and cold spots for a different mode which exhibits
the 2π/3 twist through the prism.

The competition between fluctuations obscurs some
features while enhancing others. The surface of last scat-
ter cuts a sphere out of the full 3D space, an elliptic
projection of which is given in the map of Fig. 1. Can
you see hexagons in the map? Almost. Is the 2π/3 twist
in the space visible? We are currently developing ways of
looking at the sky that pull the underlying patterns out
of the noise [17].

II. MULTICONNECTED, HYPERBOLIC HORN

No compact hyperbolic manifolds have yet been con-
strained. The only multiconnected hyperbolic space for
which predictive maps have been constructed is the horn
topology introduced by Sokolov and Starobinsky [18].
The horn is not completely compact but is only closed
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off in two directions. A two dimensional subspace is
wrapped into a flat torus. This torus is then conformally
stretched or shrunk along the third dimension tracing out
a horn (Fig. 4). There is no chaos on this space since it
is only partly compact. We were thus able to find exact
solutions for the geodesic motions and the perturbation
spectrum. While the horn topology may seem a spe-
cial case, there are many manifolds that may bear horn-
like corners. As emphasized in [3], many manifolds have
cusps. To an observer nested in this region the world
looks very much like a toroidal horn.

FIG. 4. An embedding diagram of the horn with one of
the dimensions hidden.

In the narrow throat of the horn, big hot and cold
spots cannot be supported and the temperature of the
CBR looks smooth there as demonstrated in the simu-
lated maps of Fig. 5. The upper panel shows a horn with
topology scales around the observer equal to the radius of
the last scattering surface in one direction and half that
in the other compact direction. Notice that the observer
can see exponentially deep down the narrowing throat of
the horn. The bottom panel shows topology scales equal
to 67% of the radius of the last scattering sphere in one
compact direction and 10% in the other. Again, you can
actually see the geometry of the horn [10].

As before, the averaged angular power spectrum is a
weak criterion by which to search for topology. The horn
is infinite if multiconnected. There is therefore formally
no cutoff in the angular power spectrum. Long wave-
length modes cannot fit in the two compact directions
but infinitely long modes can exist along the axis of the
horn. Again, the anisotropy and inhomogeneity would
be washed out if we only considered the angular power
spectrum and never looked at a map of the full δT (n̂)/T .
If the universe were completely compact and hyperbolic
with cuspy corners, there may again be no formal cut-
off in long wavelength power [3]. However, there may
still be patches in the sky that were too small to support
fluctuations and hence flat spots would appear.

Looking at the sky as seen by COBE, it does not ap-
pear that we live within view of any cuspy corners. It also
appears that a pattern imprinted on the microwave sky
will likely be more incisive in identifying topology than
ghost images. The pattern may not bear a flat spot,
but it will reflect the underlying symmetry group of the
manifold.

FIG. 5. The predicted COBE sky in a horn topology.

III. COMPACT, HYPERBOLIC

In the previous two sections we were able to predict the
distribution of hot and cold spots across the sky given the
geometry. We could do so because we could solve for the
spectrum of temperature fluctuations explicitly. In a to-
tally compact, hyperbolic space however, the spectrum
cannot be obtained analytically. The inability to decom-
pose fluctuations in the photon background is a direct
consequence of the chaotic mixing on compact, negatively
curved surfaces.

Techniques have been attempted in order to circum-
vent the eigenvalue problem. The correlation function
has been computed using the method of images [9]. This
method involves the sum of the correlation function in
the universal covering space with ghost images in the
copies. The temperature correlation function can then
be compared with the COBE data. The method requires
a detailed knowledge of the elements of the symmetry
group. The sum is highly divergent and is difficult in it-
self to manage. The divergence results since the number
of images proliferates at large distances.

Another approach focuses on the effect of topological
lensing of the last scattering surface. A well planned
statistic may be found which can determine if two rings
in the sky are really copies of the same collection of points
on the surface of last scatter [3,19]. High resolution and
sensitivity are demanded of an experiment to observe the
thin rings. The future satellites such as the Microwave
Anisotropy Probe (MAP) and Planck are needed to dis-
criminate a universe with such circles in its sky from one
that is simply connected [20,3].

Another alternative is to emphasize the spatial pat-
terns in the sky, although ultimately all the approaches
are interwoven. In the previous examples, the universe
clearly showed spatial patterns that exposed the under-
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lying geometry. By understanding the symmetries of the
fundamental polyhedron and the identification rules, a
CBR pattern can be deduced without the need to ex-
plicitly obtain the spectrum mode by mode [17]. Given
a breakdown of the pattern, a method not unlike that
suggested in [21] can be implemented to reconstruct the
fundamental domain. A similar philosophy was used to
search for the symmetry axes of a hypertorus in [13]. No
such axis of symmetry was detected, refining the bound
on anisotropic hypertori.

Geometric patterns have also been used successfully to
predict COBE maps for the Bianchi classes [22]. These
Bianchi classes are directly related to Thurston’s eight
geometries [2]. In addition to the three of constant cur-
vature, there are five more homogeneous but anisotropic
spaces. The sky patterns can be predicted just from a
knowledge of the group invariances that generate the ge-
ometries and their geodesic flows [23,24]. There is a phys-
ical difference here from the multiconnected models. For
the Bianchi cosmologies, there are assumed to be no ini-
tial perturbations. The temperature fluctuations in the
CBR result as the shear and expansion of the evolving
geometry Doppler shift the photons while they transit
the anisotropic space.

There is even precedence in biology. Spatial pattern
formation emerges on the backs of mammals and in part
answers the question of how the leopard got its spots
[25]. The enzymes responsible for the pigmentation on
an animals fur fluctuate through the body. The geome-
try of the developing animal and its scale relative to the
characteristic wavelength of the fluctuating enzymes dif-
ferentiate the markings. The universe in its early stages
of development similarly acquires markings. Again, the
geometry and scale of the space relative to the charac-
teristic wavelength of the fluctuations in the CBR can
influence patterning. We have already seen the universe
wear different coats in Figs. 1 and 5 reminiscent of a
leopard’s spots or a zebra’s stripes. Surprisingly, biol-
ogy is a cleaner system than cosmology since diffusion
mechanisms often single out one mode and thereby one
clean pattern. In cosmology, many modes are summed
and so many patterns compete in making the universe’s
coat. This was evidenced in the hexagons of Fig. 1 versus
those of Figs. 2 and 3. It is a theoretical prejudice that
fundamental physics is simple and everything else is just
a very messy composite. Still, the codes of nature repli-
cate themselves on scales vast and small. It will be ironic
if in this instance we have to first turn to biology to find
the clues to the universe and perhaps even a fundamental
theory of gravity.

As the observational evidence accumulates, we are
forced to confront the very real possibility that the uni-
verse is negatively curved and that the curvature scale
is just coming within view with an associated topology
scale. If we do live in a compact, hyperbolic cosmos, we
may have to rewrite the standard big bang story. A loose
narrative for the history of the universe begins with the
birth of the universe and implores an answer from quan-

tum cosmology: Is the creation of compact, hyperbolic
3-manifolds favored over others? Once such a universe
is born, chaotic mixing on the small space could lead to
the relatively smooth cosmos observed today and has al-
ready been suggested as an alternative to inflation [26].
In fact, it is precisely this suggestion which spurred some
searches for a small universe. While chaotic mixing could
explain the average smoothness, the geometry might ex-
plain the local clumpiness of matter. Pattern formation
due to geometry can affect the distribution of galaxies
as well as the CBR [18,10]. The global topology may
then create local inhomogeneity and distinctive patterns
in the large-scale distribution of luminous and dark mat-
ter. The geometry may lead to bubbly or even fractal
distributions of galaxies. This scenario for the evolution
of our universe is compelling if optimistic. Perhaps geom-
etry alone, and hence the theory of gravity, determines
the birth and fate of the cosmos.
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