
W
hat is the shape of a soccer ball?

Spherical, you correctly reply. But

there are subtleties of perception in

your answer: what you see is a surface at a con-

stant distance from a centre, so you have

embedded a 2-D space of constant curvature in

a 3-D space which is flat.

Okay. Now think about the 3-D space of

everyday perception embedded in the 4-D

spacetime of Einstein’s theory of general rela-

tivity. This is a bit trickier. Ordinary space does

not have strange properties near to us, which

is equivalent to saying that it is close to flat.

But over cosmological distances it may be

curved. The shape of the 3-D part of the 4-D

manifold can be closed (like a ball), flat (like a

table) or open (like a saddle). Even if 3-D space

is flat, 4-D spacetime is not: matter implies cur-

vature, so the universe has a definite shape.

Let us now go to five dimensions. Here things

start to get a little difficult to visualize.

However, recall the soccer ball: we intuitively

recognize it for what it is because our minds

automatically embed it in a flat space with one

extra dimension (2-D in 3-D). Another way to

realize that the surface of the ball is curved is

more technical, but analogous to what

astronomers do when they observe objects such

as quasars in the universe. Imagine you are an

ant wandering about on the surface of the

soccer ball. You never reach an edge (the uni-

verse has no edge). If you trace out a triangle

on the surface, the sum of its angles is not 360°

(the universe is not flat). This technical way

of deciding the shape of something is valid,

but not intuitive. Even for professionals, it

would be helpful if there were some way to

embed the universe in a flat background and

simply see its shape.

Recently we figured out how to do this in a

mathematically accurate manner, and among

other things obtained pictures of the Big Bang.

History and N dimensions

History involves us imaginatively travelling on

the axis of time (t), with subsidiary information

about space (x,y,z). Thus in 1492 (measured

from an arbitrary datum we refer to as AD),

Columbus sailed the ocean blue (going from

Europe to America). And a photon from a

quasar typically left it about 10 000 million

years ago, arriving in a telescope on Earth after

a journey of 10 000 million light years. Clearly,

time and space are part of the same construct.

Minkowski realized this, when he multiplied the

speed of light c (about 300000 kms–1) on to the

time, forming ct, which he used as a coordinate

on the same footing as the length, breadth and

depth we label as x,y,z. This is the basis of spe-

cial relativity, which we associate primarily with

Einstein, though previous work had been done

by Lorentz, Fitzgerald and Poincaré. This the-

ory describes photons (zero mass) moving in

flat ordinary space (no matter). It was, however,

the genius of Einstein alone who realized that

this geometrical approach needed to be taken

further, to include massive particles moving

through space filled with matter. This requires

that the manifold obtained by joining time

(1-D) and space (3-D) has to be curved.

General relativity is correct, as far as it goes.

It has been extensively tested in the solar sys-

tem, using the perihelion advance of Mercury,

the redshift of light from the surface of the Sun,

and the deflection and time-delay of photons

passing near the Sun from remote astronomi-

cal objects. It has recently been tested further

by cosmological data. The standard cosmolog-

ical models, based on Einstein’s theory, were

developed by Friedmann, Robertson, Walker

and Lemaitre. The galaxies in these models are

distributed like a fluid with no centre and no

edge (we have never observed either), and the

propagation of light from very remote sources

shows bending and lensing effects in agreement

with the theory. However, Einstein’s theory is

mathematically complicated, involving in the

general case 10, second-order, nonlinear, partial

differential equations. Also, it is hard for us

two-eyed creatures to visualize curved 4-D

spacetime. It would be helpful in the latter

regard to have something like the image of the

soccer ball we noted above.

The required extension of geometry from 4-D

to 5-D was made by Kaluza in 1921. At least,

that was when his paper was published.

History has it that Einstein “sat on it” for a

while as referee. (Einstein actually liked the

idea of extending spacetime to higher dimen-

sions, and worked on it in his later life.) Kaluza

was motivated by the wish to unify gravitation

as described by Einstein’s equations with

electromagnetism as described by Maxwell’s

equations. This works well for the fields but

has problems with their sources, particles.

These problems were apparently solved by

Klein in 1926. He proposed that the extra

dimension was rolled up, or “compactified”, to

an unobservably small size. This traditional

Kaluza–Klein theory has an enormous litera-

ture. But the theory is not correct. In recent

times it has been realized that it leads to wrong

values for the masses of elementary particles

(the hierarchy problem) and the wrong value

for another parameter which enters the theory

(the cosmological constant problem). Attempts

to solve these problems have been made, chiefly

along the lines of still further extending the

dimensionality of the theory. Hence 10-D

superstrings, 11-D supergravity and other

geometry-based theories aimed at unifying

gravitation, electromagnetism and the strong

and weak interactions of particle physics.

But, hold it! If the world is 5-D (say), and

we do not “see” the extra dimension, does
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this necessarily mean that the latter has to be

compactified or tiny?

No. Recall the ant on the surface of the soccer

ball. It does not care about the distance to

the centre, because it is constrained to be on

the surface.

Aha! Enter “induced-matter” theory in 1992

and – more recently – “membrane” theory.

These two theories are actually similar, in con-

cept and formalism. In the former, what we call

matter in 4-D is a consequence of (or induced

by) the fifth dimension; while in the latter, mat-

ter is on a 4-D membrane in a 5- (or higher)

dimensional world. Distances in induced-

matter theory are calculated most readily using

the so-called canonical metric, while distances

in membrane theory are calculated using the

so-called warp metric, the two being related

mathematically. Kind critics might refer to this

dualism as a case of great minds thinking alike;

while less-kind critics might refer to both

schools as having taken 70 years to begin to see

the wood for the trees. Whatever the view,

physicists are now in the happy position of

having a way of dealing with 4-D physics in a

5-D way which is mathematically consistent,

and (because Einstein’s theory is embedded

without violence) observationally acceptable.

The main difference between induced-matter

theory and membrane theory is how they han-

dle energy. This might be the common-or-

garden kind of energy present in the rest masses

and motions of particles, or exotic forms of

energy associated with what older generations

called “vacuum” (which we now know is not

really empty). In induced-matter theory, the

starting equations look like ones for 5-D empty

space, but these break down naturally into 4-D

ones which include those of Einstein and mimic

exactly the known properties of energy. This

realizes Einstein’s dream of matter from geom-

etry. The mathematical basis for this actually

goes back to an erudite person called Campbell,

who in a book published in 1926 proved that

it was always possible to go from an empty the-

ory in N-D to one with matter in (N–1)-D.

Nowadays, we can derive Campbell’s theorem

more succinctly using results on embeddings

due to Arnowitt, Deser and Misner. (But hats

off to Campbell anyway!) By contrast, mem-

brane theory takes equations in 5-D or

N(>5)-D, and puts the matter in explicitly, or by

hand so to speak. In this theory, the matter is

constrained to lie on the membrane by forces.

As stated, the two approaches are similar math-

ematically, but clearly different conceptually.

Whichever way we view it, the fifth dimen-

sion in these new theories is in general curved.

Putting a curved 4-D universe in a curved 5-D

manifold may be an interesting exercise in dif-

ferential geometry, but lacks a certain pizzazz.

However, we can get back to our alluring anal-

ogy with the soccer ball by using some results

from modern cosmology.

Data and maps

The real universe, by design or accident, is very

close to uniform. For example, the galaxies are

clustered; but over the largest distances we can

probe with telescopes, their density has negli-

gible fluctuations. Also, the radiation of the

3 K microwave background, which fills the

cosmos, has fluctuations in temperature of only

a few parts in 100 000. From data on both

galaxies and radiation, we infer that in addition

to what we see with telescopes there are large

amounts of dark matter. We do not yet know

exactly what this is made of, but from its grav-

itational effects we infer that it too is distrib-

uted quite uniformly. Modern data from the

lensing of remote galaxies and QSOs also indi-

cate a significant contribution from the energy

density of the “vacuum”, which in Einstein’s

theory is measured by the cosmological con-

stant. Importantly, the sum of all of these kinds

of energy makes the total density very close to

a special or critical value.

This means that, according to general relativ-

ity, the 3-D (ordinary) space part of 4-D space-

time is flat. That is, there is a flat 3-D space

embedded in a curved 4-D manifold. These

considerations of uniformity and spatial flatness

turn out to be very lucky in our quest to see the

shape of the universe: the strong symmetries of

the actual universe mean we can in principle

embed it in a 5-D manifold that is flat.

So how exactly do we do this? The answer is

that we need a map.To see that the problem is

non-trivial, consider the Earth (or a soccer

ball). The Mercator projection, which is used

in school atlases, is useful because it maps the

curved surface of our globe on to a flat page.

However, in so doing it distorts the areas of the

land masses, making them larger at higher lat-

itudes than near the equator. (It is said that the

British liked this mapping because it exagger-

ated the size of their empire, but while it helped

with Australia they never owned the apparently

huge Greenland.) This kind of mapping prob-

lem can be solved with an Equal-Area projec-

tion which, while it may look odd, is used by

geographers. There are indeed an infinite num-

ber of ways of making a map, either for the

Earth or the universe. The value of a map
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1: Plots showing the shape of the universe for a
variety of values of the constant α for various
values of the other parameter (l0 = 20, 40, 60).

a: α = 3/2 b: α = 2
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depends on what it will be used for.

To see the shape of the universe, we have a

clear plan: there is a flat 3-D space that is part

of a curved 4-D spacetime and we wish to

embed the latter in a flat 5-D manifold.

The equations needed to do this are, unfor-

tunately, not as simple as the concept. In gen-

eral relativity, there are several results known

about embeddings (which is a posh term for

maps). Thus the Schwarzschild solution, which

describes the gravitational field outside the

Sun, was shown by Tangherlini in 1963 to be

embeddable in a flat higher-dimensional man-

ifold with N ≥ 6. And any solution of 4-D

Einstein theory can be embedded in a flat man-

ifold with N ≥ 10. (This is one of the main moti-

vations for superstrings, where so-called

zero-point energies are cancelled out in a man-

ifold with N =10.) Our problem is topologically

a bit simpler, because the symmetries of the

actual universe outlined above mean we only

have to consider a flat 5-D manifold. However,

because we are trying to represent the real uni-

verse and not some hypothetical construct, we

have to ensure that we do not contradict the

physics involved. The physics is encapsulated in

field equations. In 4-D general relativity, these

are the 10 Einstein equations alluded to before.

In an N-D theory of the Einstein type, the num-

ber of field equations is N(N–1)/2. This gives

15 for N = 5 as in induced-matter or membrane

theory. So before we rush off into physical 5-D

oblivion, we need a solution of the field equa-

tions that represents 4-D reality. Relax. The

solution was found by Ponce de Leon in 1988

and shown to agree with cosmological data by

Wesson in 1992. It has many interesting prop-

erties that go beyond standard cosmology, but

for the present purpose all we need to know is

that the solution guarantees reality.

Now we can sharpen our pencils! Safe with

the physics, we can apply a bit of IQ and con-

struct the map.

The shape of the universe

A soccer ball on a table is easy to visualize, but

we should not expect the universe to be so sim-

ple. At the present epoch, the energy in the 3 K

microwave background is many orders less

than that in other forms of matter, a situation

that can be summed up by saying that the

equation of state (a relation between pressure

and density) is analogous to that of dust.

At early epochs, the energy in radiation and

the motions of ultrarelativistic particles was

comparable to that in the rest masses of the

particles, and the equation of state was close to

that of photons, where the pressure is 1/3 of

the energy density.

At extremely early times, we are not sure of

the equation of state. But data from the

microwave background indicate that there may

have been a period of very rapid expansion,

called inflation. This can be handled using a

classical description of a fluid if the pressure is

allowed to be negative. This may sound odd, but

just means that the particles in the Big Bang fire-

ball were trying to pull each other together, even

though the universe was outpowering this by its

expansion. (The cosmological constant, referred

to before, can in Einstein’s theory be recast as

describing a kind of vacuum fluid where the

pressure is proportional to minus the energy

density.) This is an uncertain section of cosmol-

ogy, but an exciting one where classical physics

meets particle physics; so if we wish to cover all

the bases, we should think about the shape of

the universe at these extremely early times.

What the above means is that the shape of the

universe evolves with time. There are at least

three phases. These depend on the equation of

state, and in the Ponce de Leon models are

specified by three values of a constant alpha:

α = 3/2 for dust, α = 2 for radiation, and

α = small (but unknown) for inflation. This

step-like description is, of course, an approxi-

mation to what really happened; and if we had

better astrophysical data we could smooth the

picture. It would look like one of the blobs in

a 1960s lava lamp.

This analogy is closer than most. Consider a

blob of oily material floating in water. The sur-

face of the blob changes its shape depending

largely on the physics at the surface, while the

water stays there. Substitute the surface of the

blob for 4-D spacetime, and the water for the

flat 5-D manifold. Voila!

In general relativity and its N-dimensional

extensions, things happening in one less dimen-

sion are said to occur on a hypersurface.

Therefore, in induced-matter and membrane

theory in 5-D, our universe in 4-D is a hyper-

surface. The map we are interested in is one

where there are coordinates for a flat 5-D man-

ifold, and other coordinates for a curved 4-D

hypersurface which we call spacetime. We

could use Cartesian coordinates to describe

things; but as in cases like the Earth or a soc-

cer ball, we can make life easier by using spher-

ical ones to describe ordinary space. And

because the real universe is uniform (see

above) we only really need one of these, the

radius. Let us label the essential coordinates in

the big 5-D space as the time T, radius R, and
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an extra length L. The corresponding ones in

the little 4-D space are the time t and the radius

r. (The number of coordinates in the big space

must be one larger than the number in the lit-

tle space, because we are “going on to” a

hypersurface. This is like emerging from a trap-

door on to a curved deck.) In the big space,

nothing much happens because T, R, L are

labels for a static, flat manifold. In the little

space, galaxies evolve in time t and are located

at different distances r in ordinary space.

Mathematically, the view from 5-D to 4-D is

encoded in functions which map T, R, L to t,
r, and these functions are complicated.

So let us skip them and instead use pictures

that contain the same information. Before

showing these, however, a few short comments

are in order about just how the functions turn

into pictures. In the 3-D world we use t and r
as coordinates because they are the most con-

venient. (We can then ignore the angular spa-

tial measures because – again using the

soccer-ball analogy – they make no difference

for an ant on the surface.) In the 5-D world, we

could if we wished use Cartesian coordinates in

addition to the time, because the big space is

flat. However, this is not convenient because it

makes unnecessarily complicated the corre-

spondence between the big and little spaces.

Hence we match t, r to T, R, L. The last is hard

for us to visualize, but is nevertheless just an

ordinary length. The correspondence between

the coordinates in the 4-D and 5-D spaces, as

constrained by the underlying physics, then

gives us pictures which are analogous to the

Penrose diagrams found in books on general

relativity (these help us visualize 4-D physics on

a 2-D sheet of paper). However, while the lat-

ter can often be drawn by hand, our functions

are so complicated that they have to be drawn

by computer and, indeed, even modern com-

puters cannot fill in every cranny of the plots.

With these comments understood, let us take a

look at some of the pictures in our gallery.

Figure 1a shows the shape of the universe at

the present epoch (α = 3/2, dust). The 5-D axes

are labelled T, R, L as described above. The

roughly cone-shaped structure is our 4-D uni-

verse. The lines along its length and around its

circumference show how the galaxies evolve

and where they are located. The shape (in

cross-section) is a parabola. Where everything

starts in 4-D is the Big Bang.

Figure 1b shows the shape of the universe at

early epochs when it was extremely hot (α = 2,

radiation). The labelling is as previously, but

the shape is different.

Figure 1c shows an extremely inflationary

universe (α = 1/30). The distinctive trumpet

shape is due to the effects of interactions

between particles involving the vacuum,

whereby matter is pushed apart much more

vigourously than in other models. The Big

Bang, in so far as it can be defined, is now at

“past null infinity” or indefinitely ancient.

Figure 1d shows a “nest”of moderately infla-

tionary models (α = 1/3, with the hypersurface

located at values of 20, 40 and 60 times the

unit value used in previous figures). The match

between classical cosmology as described by

general relativity, and quantum cosmology as

described by N-dimensional field theory, is still

being worked on, and we do not know exactly

what shape the universe had in extreme history.

The preceding four figures, even if they have

no other merit, are a big advance in visualizing

the universe. By embedding it in (or mapping it

from) 5-D, we can actually see its 4-D shape.

But we may not be talking here only about a

pretty face: what if the fifth dimension is real?

Summary and speculation

If you look at a soccer ball, it is easy to deter-

mine its shape because you see it in a flat 3-D

background. It is not easy to visualize the shape

of the 4-D universe, because it is curved and we

are in it. However, the nature of the real uni-

verse as inferred from observations allows us

to embed it in a flat 5-D manifold. The shape

so revealed is not as simple as that of a soccer

ball, and evolves with time; but still, pictures

like those given above are informative.

Modern cosmology makes good use of extra

dimensions. 5-D Kaluza–Klein theory is the

basic extension of 4-D Einstein theory. Its two

current forms are induced-matter theory (in

which energy and matter are geometrical in ori-

gin) and membrane theory (in which matter is

on a brane or hypersurface). 10-D and 11-D

take things further, as in superstrings and

supergravity.

But there is a fundamental question involved

which is not so much technical as conceptual:

are extra dimensions merely hypothetical con-

structs, or are they (in some sense) real?

It is educational before risking an opinion on

this to inquire what “real” means in physics

and astronomy. Is an electron “real”, as envis-

aged in Bohr’s model of the atom as a minia-

ture solar system; or is it a shadowy thing, as

described by the orbital wave functions of

Heisenberg and Schrodinger? Is a planet like

Pluto “real” because we infer its existence from

perturbations in the orbits of other objects, in

a solar system whose gravitational laws are

established; or do we only admit its existence

after we have seen it via light in a telescope?

Most physicists and astronomers today

would say that something is “real” if we infer

something new that has a logical explanation

and does not wreck what we already accept.

The neutrino is a good example of this philos-

ophy: it was postulated to exist because of our

belief in the principle of the conservation of

energy, and later confirmed by experiments

with new kinds of detectors. This philosophy

has gradually become accepted over the last 70

years, and can be traced back to the work of

Einstein and his contemporary Eddington.

Both men realized that there is more to physics

than the dreary mechanics of the ether, and

opened the way to new and more imaginative

ways of describing the physical aspects of our

existence. If we acknowledge that physics

involves not only things, but also imagination,

what opinion should we have about extra

dimensions?

In 5-D induced-matter theory, the fifth dimen-

sion is all around us: it is the energy of the

world, whether in the rest masses of particles,

the kinetic energy of their velocities, the poten-

tial energy of their interactions, or extra con-

tributions involving what has traditionally been

called the vacuum. In 5-D membrane theory, or

higher-dimensional versions of it, the extra parts

of the manifold are not apparent to the eye, but

control the interactions of particles and there-

fore ultimately the matter of everyday existence.

If higher dimensions are merely inventions,

they are uncannily clever ones. History, com-

mon-sense and data indicate that they may well

be “real”.

If the fifth dimension is real, the implications

are profound. Intensive work is underway on

the technical implications of N(>4)-D physics,

but one striking aspect is already apparent

from the results presented above on the shape

of the universe as viewed from 5-D. Our pic-

tures of the Big Bang agree with the conven-

tional opinion that it is a singularity in 4-D, but

the manifold in which it is located is as smooth

as a baby’s bum in 5-D. There is no Big Bang

in 5-D. Wow. �
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