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We test a class of holographic models for the very early Universe against cosmological observations and
find that they are competitive to the standard cold dark matter model with a cosmological constant (ΛCDM)
of cosmology. These models are based on three-dimensional perturbative superrenormalizable quantum
field theory (QFT), and, while they predict a different power spectrum from the standard power law used in
ΛCDM, they still provide an excellent fit to the data (within their regime of validity). By comparing the
Bayesian evidence for the models, we find that ΛCDM does a better job globally, while the holographic
models provide a (marginally) better fit to the data without very low multipoles (i.e., l ≲ 30), where the
QFT becomes nonperturbative. Observations can be used to exclude some QFT models, while we also find
models satisfying all phenomenological constraints: The data rule out the dual theory being a Yang-Mills
theory coupled to fermions only but allow for a Yang-Mills theory coupled to nonminimal scalars with
quartic interactions. Lattice simulations of 3D QFTs can provide nonperturbative predictions for large-
angle statistics of the cosmic microwave background and potentially explain its apparent anomalies.
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Observations of the cosmic microwave background
(CMB) offer a unique window into the very early
Universe and Planck-scale physics. The standard model
of cosmology, the so-called ΛCDM model, provides an
excellent fit to the observational data with just six param-
eters. Four of these parameters describe the composition
and evolution of the Universe, while the other two are
linked with the physics of the very early Universe. These
two parameters, the tilt ns and the amplitude Δ2

0ðq�Þ,
parameterize the power spectrum of primordial curvature
perturbations,

Δ2
RðqÞ ¼ Δ2

0ðq�Þ
�
q
q�

�
ns−1

; ð1Þ

where q�, the pivot, is an arbitrary reference scale. This
form of the power spectrum is a good approximation for
slow-roll inflationary models and has the ability to fit the
CMB data well. Indeed, a near-power-law scalar power
spectrum may be considered as a success of the theory of
cosmic inflation.
The theory of inflation is an effective theory. It is based

on gravity coupled to (appropriate) matter perturbatively
quantized around an accelerating Friedmann-Lemaître-
Robertson-Walker (FLRW) background. At sufficiently
early times, the curvature of the FLRW spacetime becomes
large and the perturbative treatment is expected to break

down—in this regime, we would need a full-fledged theory
of quantum gravity. One of the deepest insights about
quantum gravity that emerged in recent times is that it is
expected to be holographic [1–3], meaning that there
should be an equivalent description of the bulk physics
using a quantum field theory with no gravity in one
dimension less. One may thus seek to use holography to
model the very early Universe.
Holographic dualities were originally developed for

spacetimes with a negative cosmological constant (the
AdS/CFT duality) [3], and soon afterwards the extension
to de Sitter and cosmology was considered [4–8]. In this
context, the statement of the duality is that the partition
function of the dual quantum field theory (QFT) computes
the wave function of the Universe [8], and using this wave
function cosmological observables may be obtained.
Alternatively [9–13], one may use the domain-wall–
cosmology correspondence [14]. The two approaches are
equivalent [15].
Holography offers a new framework that can accommo-

date conventional inflation but also leads to qualitatively new
models for the very early Universe. While conventional
inflation corresponds to a strongly coupled QFT [16–32],
the new models are associated with a weakly coupled QFT.
These models correspond to a nongeometric bulk, and
yet holography allows us to compute the predictions for
the cosmological observables. We emphasize that the
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application of holography to cosmology is conjectural, the
theoretical validity of such dualities is still open, and different
authors approach the topic in different ways. Herewe seek to
test these ideas against observations.
A class of nongeometric models were introduced in

Ref. [9], and their predictions have been worked out in
Refs. [9–13,33,34]. These models are based on three-
dimensional superrenormalizable QFT, and they univer-
sally predict a scalar power spectrum of the form

Δ2
RðqÞ ¼

Δ2
0

1þ ðgq�=qÞ ln jq=βgq�j þOðgq�=qÞ2
; ð2Þ

where g is related to the coupling constant of the dual QFT,
while β depends on the parameters of the dual QFT
(see below).
The form of the power spectrum in (2) is distinctly

different from (1). [For small enough g, one may rewrite (2)
in the form (1) with momentum-dependent nsðqÞ.
However, as discussed [9,35], the momentum dependence
of nsðqÞ is qualitatively different from that of slow-roll
inflationary models [36].] Since these are qualitatively
different parametrizations, one may ask which of the
two is preferred by the data. Note that this question is
a priori independent of the underlying physical models that
produced (1) and (2). This question has already been
addressed for WMAP7 data [37] in Refs. [35,38], and it
was found that, while the data mildly favor ΛCDM, it was
insufficient to definitively discriminate between the two
cases. Since then, the Planck mission has released its data
[39], and it is now time to revisit this issue. We will present
the main conclusions of the fit to Planck data here, referring
to Ref. [40] for a more detailed discussion.
On the theoretical side, there has also been significant

progress since Ref. [35]. While the form of (2) is univer-
sally fixed, the precise relation between g and β and the
parameters of the dual QFT requires a two-loop compu-
tation, which has now been carried out in Ref. [41]. We can
thus not only check whether (2) is compatible with CMB
data, but also use the data to do a model selection.
Theory.—Following Ref. [9], we consider the dual QFT

to be an SUðNÞ gauge theory coupled to scalars ΦM and
fermions ψL, whereM and L are flavor indices. The action
is given by

S ¼ 1

g2YM

Z
d3xtr

�
1

2
FijFij þ ðDΦÞ2 þ 2ψDψ

þ2
ffiffiffi
2

p
μðΦψψÞ þ 1

6
λΦ4

�
; ð3Þ

where all fields, φ ¼ φaTa, are in the adjoint of SUðNÞ
and trTaTb ¼ 1

2
δab. Fij is the Yang-Mills field strength, and

D is a gauge covariant derivative. We use the shorthand
notation ðDΦÞ2 ¼ δM1M2

DiΦM1DiΦM2 , ψDψ ¼ δL1L2

ψL1γiDiψ
L2 , μðΦψψÞ≡μML1L2

ΦMψL1ψL2 , and λΦ4≡
λM1M2M3M4

ΦM1ΦM2ΦM3ΦM4 .

The holographic dictionary relates the scalar and tensor
power spectra to the two-point function of the energy-
momentum tensor Tij. For the scalar power spectrum,

Δ2
RðqÞ ¼

1

4π2N2fðg2effÞ
; ð4Þ

where g2effðqÞ≡ g2YMN=q is the effective dimensionless ’t
Hooft coupling constant, q is the magnitude of the
momentum ~q, and fðg2effÞ is extracted from the momentum
space two-point function of the trace of the energy-
momentum tensor, hTi

ið~pÞTj
jð~qÞi ¼ ð2πÞ3δð~pþ ~qÞq3N2

fðg2effÞ. In perturbation theory,

fðg2effÞ ¼ f0½1 − f1g2eff ln g
2
eff þ f2g2eff þOðg4effÞ�: ð5Þ

The function f0 is determined by a one-loop computation,
while f1 and f2 come from two loops. The presence of the
logarithm is due to UV and IR divergences in the compu-
tation of the two-point function of the energy-momentum
tensor. A detailed derivation of (4) may be found in
Refs. [10,35]. Following Ref. [35], Eq. (2) and Eqs. (4)
and (5) match if

gq� ¼ f1g2YMN; ln
1

β
¼ f2

f1
þ ln jf1j;

Δ2
0 ¼

1

4π2N2f0
: ð6Þ

So, a universal prediction of these class of theories is the
power spectrum (2), independent of the details of the two-
loop computation. [This assumes f1 ≠ 0. A separate
analysis is required, where f1 ¼ 0, e.g., for (3) without
gauge fields and fermions].
The one-loop computation was done in Refs. [9,10], and

we here report the result of the two-loop computation
[41,42]. The final result is

f0 ¼
1

64
N ðBÞ; N ðBÞ ¼ 1þ

X
M

ð1 − 8ξMÞ2; ð7Þ

f1 ¼ −
4

3π2
1

N ðBÞ

�
N ψ − 2þ 2N Φ þ 1

2
μ2 − 48ΣΦ

�
; ð8Þ

ln β ¼ ln
1

jgj −
a0
f1

−
64=π2

f1N ðBÞ
ΣΦ ln

Nf1
g

; ð9Þ

where N Φ and N ψ are the total number of scalars and
fermions, respectively, and

PRL 118, 041301 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

27 JANUARY 2017

041301-2



a0 ¼ −
1

24π2N ðBÞ

�
16þ 3π2 − 56N ψ − 4

X
M

μ2MM

þ
X
M

3ð8ξM − 1Þ

× ½8ðπ2 − 16ÞξM − 3π2 þ 112þ 2μ2MM�

þ π2
X
M1;M2

λM1M1M2M2
ð8ξM1

− 1Þð8ξM2
− 1Þ

�
;

ΣΦ ¼
X
M

ξ2M

�
2þ 1

2
μ2MM

�
;

where μ2M1M2
¼ P

L1;L2
μM1L1L2

μM2L2L1
, ξM is the nonmini-

mality parameter, and summations over MðLÞ are over
scalars (fermions). [Nonminimal scalars on a curved back-
ground have the coupling 1=ð2g2YMÞ

P
M

R
ξMRðΦMÞ2,

where R is the curvature scalar, and this term induces an
“improvement term” to their energy-momentum tensor,
Tij ¼ ð2= ffiffiffi

g
p ÞðδS=δgijÞjgij¼δij

; see [42]].
Fitting to the data.—Wewould likenow to assess howwell

a power spectrum of the form (2) fits the cosmological data
and compare with that of the conventional power-law power
spectrum. Recall that ΛCDM is parametrized by six param-
eters ðΩbh2;Ωch2; θ; τ;Δ2

0; nsÞ, where Ωbh2 and Ωch2 are
the baryon and dark matter densities, respectively, θ is the
angular size of the sound horizon at recombination, τ is
the optical depth due to reionization, and Δ2

0 and ns are the
parameters entering in (1). To formalize the comparison, we
define (following Ref. [35]) holographic cosmology (HC) as
the model parametrized by ðΩbh2;Ωch2; θ; τ;Δ2

0; g; ln βÞ.
(In Ref. [35], the parameter β was incorrectly assumed to be
equal to one. We refitted the WMAP data and found that the
global minimum is at β ¼ 3.777.) This model has seven
parameters, so, in order to compare models with the same
number of parameters, we also considerΛCDMwith running
αs ¼ dns=d lnq. Note that our aim here is to compare
empirical models, not the underlying physical models that
lead to them. If the data select one of the two empirical
models, then this would falsify all physical models that
underlie the other model.
We analyzed the data using CosmoMC [47–53].We ran both

ΛCDM and HCwith the same data sets, fitting the models to
the Planck 2015 data including lensing [39,54–59], aswell as
baryonic acoustic oscillations (BAO) [60–67] and BICEP2-
Keck-Planck (BKP) polarization [68].After CosmoMChad run
todetermine themeananderrors in theparameters,we ran the
minimizer [69] within the code to determine the best fit
parameters and likelihood.
The Planck angular TT spectrum together with the best

fit curves and residuals for HC and ΛCDM are presented in
Fig. 1. Notice that the difference between ΛCDM and HC
lies within the 68% region of Planck, with the largest
difference being at small multipoles. Very similar results
hold for the TE and EE spectra [40]. We determined the

best fit values for all parameters for HC, ΛCDM, and
ΛCDM with running. Our values for the parameters of
ΛCDM and ΛCDM with running are in agreement with
those determined by the Planck team. All common param-
eters of the three models are within 1σ of each other (with
the notable exception of the optical depth τ [40]). We report
the values of Δ0, g, ln β, and χ2 in Table I (the list of all
parameters can be found in Ref. [40]). The χ2 of the fit
indicates that HC is disfavored at about 2.2σ relative to
ΛCDM with running, when we consider all multipoles.
Relative to the WMAP fit in Ref. [35], the value of g has

decreased from −1.3 × 10−3 to −7 × 10−3. In Fig. 2, we
investigate how the value of g changes if we change the
range of multipoles that we consider. It is clear from the
plot that the value of g is compatible between WMAP and
Planck, if we keep the same multipoles. It is also clear that
the high l modes want to push g to lower negative values.

FIG. 1. Angular power spectrum of CMB temperature anisot-
ropies, comparing Planck 2015 data with best fit ΛCDM (dotted
blue curve) and holographic cosmology (solid red curve) models,
for l ≥ 30. The lower panel shows the relative residuals, where
the green shaded region indicates the 68% region of Planck 2015
data.

TABLE I. Upper part: Planck 2015þ BAOþ BKP mean
parameters for holographic cosmology. Lower part: χ2 values
for a fit with all multipoles and a fit with l < 30 multipoles
excluded.

HC 109Δ2
0

g ln β

All l 2.126þ0.058
−0.058 −0.00703þ0.00105

−0.00167 0.877þ0.186
−0.239

l ≥ 30 2.044þ0.072
−0.075 −0.01305þ0.00452

−0.00345 1.014þ0.206
−0.272

HC ΛCDM ΛCDM running
χ2 (all l) 11324.5 11319.9 11319.6
χ2ðl ≥ 30Þ 824.0 824.5 823.5
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Larger values of jgj indicate that the theory may become
nonperturbative at very low l, and, as such, the predictions
of the model cannot be trusted in that regime. We shall see
below that this is supported by model selection criteria.
Therefore, we repeat the fitting, excluding the l < 30

multipoles. The results for Δ0, g, ln β, and χ2 are tabulated
in Table I. With these data, all common parameters are now
compatible with each other [40]. The χ2 test shows that the
three models are now within 1σ.
The power spectrum for the tensors takes the same form

as (2) but with different values of g and β. We fitted the data
with this form of the power spectrum and found that it is
consistent with r ¼ 0; the 2σ upper limit on the tensor-to-
scalar ratio is r < 0.125.
Bayesian evidence.—In comparing different models, one

often uses information criteria such as the value of χ2,
which quantifies the goodness of a fit. We emphasize that
with “model” we mean the three empirical models intro-
duced above: ΛCDM, ΛCDM with running, and HC. What
we really want to know, however, is what the probability is
for each of these models given the data. This is obtained by
computing the Bayesian evidence.
As discussed in Ref. [35], if we assume flat priors for all

parameters αM that define a given model, the Bayesian
evidence is given by E ¼ ð1=VolMÞ

R
dαMLðαMÞ, where

LðαMÞ is the likelihood and VolM is the volume of the
region in parameter space over which the prior probability
distribution is nonzero. The evidence may be computed
either by using CosmoMC or by MultiNest [70–72].
Note that the aim here is to compare empirical models,

and we determined the priors from previous fits of the same
empirical models to the data (as is common). (Had we
focused on specific physical models, we could use the wave
function of the Universe to obtain corresponding theoretical
priors; see [18] for work in this direction.) We use the priors
in Table 4 of Ref. [35], except that the upper limit of 100θ is
taken to be 1.05. The prior for the running is taken to be

jαsj ≤ 0.05. The priors for ns are the asymmetric prior used
in Ref. [35]: 0.92 ≤ ns ≤ 1. For the prior for g, we use a
variable range, gmin ≤ g < 0. This prior is fixed by the
requirement that the perturbation theory is valid. We will
allow for the possibility that the perturbative expansion is
valid only for l > 30. We use as a rough estimate for the
validity of perturbation theory that gq�=q is sufficiently
small, taking this to mean a value between 0.20 and 1 at
l ¼ 30. (The momenta and multipoles are related via
q ¼ l=rh, where rh ¼ 14.2 Gpc is the comoving radius
of the last scattering surface.) This translates into
−0.009 < gmin < −0.45. The prior for β is fixed by using
the results from (our fit to) WMAP data. We use two sets of
priors: one coming from the 1σ range (0 ≤ ln β ≤ 2) and the
other from the 2σ range (−0.2 ≤ ln β ≤ 3.5).
The results for the Bayesian evidence are presented in

Fig. 3 for l ≥ 30, where two-loop predictions (2) can be
trusted. As a guide [73], a difference lnE < 1 is insignifi-
cant and 2.5 < lnE < 5 is strongly significant. We see that
the difference between evidence for ΛCDM and HC
predictions is insignificant, with marginal preference for
HC, depending on the choice of priors.
Model selection.—We would like now to examine

whether we can use the data to rule out or in some of
the models described by (3). There are phenomenological
and theoretical constraints that we need to satisfy. The
phenomenological constraints are that the bound on the
tensor-to-scalar ratio r ≤ 0.125 should be satisfied and
the model should reproduce the observed values for the
amplitude Δ2

0 and ln β. The theoretical prediction for the
r is [9,10,34]

r ¼ 32
1þPN Φ

M¼1ð1 − 8ξMÞ2
1þ 2N ψ þN Φ

; ð10Þ

and the theoretical predictions for Δ2
0 and ln β are given in

(6)–(9). In deriving (2), we used a ’t Hooft large N
expansion and perturbation theory in g2eff . We thus need
to check that any solution of the phenomenological con-
straints is consistent with these theoretical assumptions.

FIG. 2. Plot of 1σ and 2σ regions in parameter space for
holographic cosmology g and lnðβÞ values for WMAP (blue line,
right), Planck (red line, middle), Planck with l < 30 values
removed (green line, left), and Planck with l > 700 values
ignored (purple dashed line). We see that higher resolution data
progressively push g to lower negative values.

FIG. 3. Bayesian evidence using l ≥ 30 data only, where the
perturbative expansion (2) can be trusted. An error is indicated by
the shaded region around the lines.
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There are a few universal properties of the two-loop
correction gq�=q ln jq=βgq�j. This term vanishes at large q,
reflecting the fact that the QFTs we consider are super-
renormalizable. Its absolute value gradually increases till it
reaches the local maximum 1=eβ at q ¼ eβjgjq�. At lower
values of l, the two-loop term changes sign and grows very
fast as we go to lower multipoles becoming equal to one
(same size as the one-loop contribution) below l ¼ 10.
Therefore, we should not trust these models below l ∼ 10.
In fact, one should even be cautious in using the two-loop
approximation for l’s lower than 35. While the overall
magnitude of the two-loop term is small up until l ¼ 10,
this happens due to a large cancellation between the f1 and
the f2 term in (5). We will use as an indicator of the
reliability of perturbation theory the size of f1g2eff ln g

2
eff .

Let us consider a gauge theory coupled to a large number
N Φ of nonminimal scalars, all with the same nonmini-
mality parameter ξ and the same quartic coupling λ. For
sufficiently large N Φ, the scalar-to-tensor ratio (10)
becomes

r ¼ 32ð1 − 8ξÞ2; ð11Þ

and the bound on r implies j1 − 8ξj ≤ 0.061, where the
equality holds when r ¼ 0.12. Choosing a value of ξ, then
the observational values of Δ2

0 and ln β give two equations,
which can always be solved to determine N and N Φ.
For example, if we choose ξ ¼ 0.133, which corresponds
to r ¼ 0.12, and take λ ¼ 1, the solution to the two
constraints is

N ¼ 2995; N Φ ¼ 23255: ð12Þ

This solution satisfies the theoretical constraints: First,
N2 ≫ N Φ, so the large N expansion is justified and,
second, the effective coupling remains small for all
momenta seen by Planck, 3.3 × 10−4 ≤ g2effðqÞ ≤ 0.41.
For this solution, however, f1 ≈ −8ð1 − 48ξ2Þ=ð1 − 8ξÞ2 ≈
−11 and f1g2eff ln g

2
eff ≈ 1 when l ¼ 35, so we should not

trust the perturbative expansion below around l ≈ 35.
Conclusions.—We showed that holographic models

based on three-dimensional perturbative QFT are capable
of explaining the CMB data and are competitive to the
ΛCDM model. However, at very low multipoles (roughly
l < 30), the perturbative expansion breaks down, and in
this regime the prediction of the theory cannot be trusted.
The data are consistent with the dual theory being a gauge
theory coupled to a large number of nearly conformal
scalars with a quartic interaction. It would be interesting to
further analyze these models in order to extract other
properties that may be testable against observations. In
particular, nonperturbative methods (such as putting
the dual QFT on a lattice) can be used to reliably model
the very low multipoles, which may potentially explain the
apparent large-angle anomalies in the CMB sky (e.g., [74]).
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